
Impurities and geometrical effects on the electron energy spectrum of quantum rings

G. A. Farias,1,* M. H. Degani,1,† J. A. K. Freire,1,‡ J. Costa e Silva,1,§ and R. Ferreira2,�

1Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, Fortaleza, 60455-900 Ceará, Brazil
2Laboratoire Pierre Aigrain, Ecole Normale Superieure, 24 Rue Lhomond, F75005 Paris, France

�Received 19 December 2006; revised manuscript received 10 September 2007; published 21 February 2008�

We calculate the energy spectrum of semiconductor quantum rings. We consider a realistic model consisting
of rings with finite sizes and barrier potential and take into account an external magnetic field applied perpen-
dicularly to those structures. The solutions of the Schrödinger equations are found using an evolution method
not limited to small perturbations. The magnetic field leads to the Aharonov-Bohm �AB� oscillations, which are
strongly dependent on the presence of static defects. We consider charged impurities and interface roughness,
which break the cylindrical ring symmetry and can strongly affect, or even destroy, the AB oscillations.
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I. INTRODUCTION

Recent progress in nanofabrication techniques has al-
lowed the construction of a new confined structure called a
quantum ring �QR�. The QR is often modeled by a cylindri-
cal quantum dot with an internal axially symmetric cavity.
This unique geometry has attracted much attention in the last
few years.1–10 In the presence of an axially directed magnetic
field, persistent current and oscillations of the electron en-
ergy as a function of the magnetic flux �Aharonov-Bohm
effect� were found to occur.11 The Aharonov-Bohm �AB� os-
cillations are due to a change of phase on the wave function
when the magnetic flux � passing through the ring reaches
the magnetic quantum flux �0=h /e �h is the Planck constant
and e is the electronic charge�. The structural modification
makes the electronic properties of rings quite different from
the dots. Quantum rings can be obtained, for example, from
GaAs quantum dots which are partially covered with
Ga�Al�As,3 such that the original dots develop a hole in their
center and get a ringlike shape. Other materials, such as
InGaN /GaN,2 In�Ga�As,8 and InAs / InP,7 have also been
used in the formation of QRs.

The electronic states of QR’s in the presence of external
fields have been the subject of intense investigation in recent
years.5,6,12–19 Some works pointed out that optical properties
and electronic states of actual structures are strongly affected
by impurities and geometrical imperfections of the system.
Monozon and Schmelcher6 have considered the case of an
impurity center in a semiconductor QR and calculated ana-
lytically the binding energy of an electron in the presence of
crossed magnetic and electric fields, considering the QR po-
tential as an infinite barrier. Bruno-Alfonso and A. Latgé12,15

also studied the effects of an impurity on QRs subjected to
an external magnetic field. They used a variational approach
to obtain the 1s-like shallow-donor impurity states, with the
impurity located inside the QR and at a medium distance of
the internal and external radii. They observed that, in this
particular case, the binding energy is essentially independent
of the external magnetic field. Dias da Silva et al.5 analyzed
the effects of impurities on the AB oscillations in QRs and
their subsequent effects on the photoluminescence emission.
Monozon and Schmelcher6 considered an analytical ap-
proach to the problem of an impurity in a QR, but their

results are valid only for particular values of the external
electrical or magnetic field strengths and for particular geo-
metrical parameters associated with confinement in the QR.

Geometrical changes in QRs also affect the electronic
properties. Recently, Lavenère-Wanderley et al.20 and Bruno-
Alfonso and Latgé15 analyzed the effects of eccentricity in
QRs, which can suppress the AB oscillations. Gridin et al.21

studied the electronic states in QRs with arbitrary shapes,
showing the presence of state localization in regions of maxi-
mal curvature �at B=0�. In all calculations, we observe the
same restrictions due to the perturbation method or to the
fact that the carriers are confined by infinite barriers outside
the ring.

In the present paper, we study the energy spectrum of an
electron in semiconductor quantum rings considering an ex-
ternal magnetic field applied perpendicularly to those struc-
tures, taking into account a realistic model consisting of
rings with finite size and barrier potential. The presence of
one or two positive and negative hydrogenic impurities is
considered and its effect on the AB oscillations is investi-
gated. The effects on the energy spectrum due to an arbitrary
deformation, such as lack of cylindrical symmetry on the
geometry of the structure and roughness on the ring surfaces,
are also considered. Contrary to previous theoretical studies,
we apply a nonperturbative method that can be used for any
magnetic field intensity, location of the impurities, and ring
shape. Moreover, it allows the study of excited ring states
and can also be easily generalized to tackle different radial
potential profiles �and in particular, smoother ones in the
presence of interdiffusion�.

The paper is organized as follows. In Sec. II, we present
our model of a QR and discuss the method used to solve the
Schrödinger equation. In Sec. III, we present the effects of
the presence of impurities close to the ring on its electronic
levels. In Sec. IV, we analyze the AB oscillations in rings
that present an eccentricity or roughness of surfaces. Finally,
in Sec. V, we present our conclusions.

II. HAMILTONIAN MODEL

We consider a QR formed by the revolution around the z
axis of a cube with internal �external� in-plane radius ��� �
=a�b� and ring height hz along the growth direction �z� �see
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inset of Fig. 1�. Usually hz�a ,b so that one can approxi-
mately decouple the electron motions along the z direction
and in the x ,y plane and retain in the analysis only the first
state along the z direction �adiabatic approximation�. Conse-
quently, without loss of generality, our system can be con-
sidered two dimensional, with the electron confined in the
plane z=0. We also consider an external uniform magnetic
field B parallel to the z axis and hydrogenic impurities lo-
cated at �� =�� imp and at a distance z=zi from the QR plane.
Within the effective-mass approximation, the confining po-
tential is given by

Ve���� = � 0 if a � ��� � � b

V0 otherwise.
� �1�

The QR is embedded in a �GaAl�As matrix with the bar-
rier height V0=190 meV, corresponding to an Al concentra-
tion of x=0.25. Considering a position independent parabolic
conduction band, the Hamiltonian can be written as

H =
1

2m* �p� + eA� �2 + Ve���� + �
i=1

N

Vimp
i + �Ve���� , �2�

where m* is the electron effective mass �m*=0.067m0 with
m0 as the free electron mass� and the vector potential is cho-

sen in the symmetric gauge A� = 1
2B� ��� . The potential due to

each impurity is taken of the form Vimp
i =

Zie

4�		0
/ ���� −�� imp�2

+zi
2	1/2, with Zi as the impurity charge, N is the number of

impurities, and the dielectric constant of the GaAs is taken as
	=12.5. This form follows after averaging the three-
dimensional Coulomb potential by the z-related electron den-
sity, which is assumed to be strongly localized inside the ring
��-like along z�. The last term in Eq. �2� is a perturbation to
the confining potential that breaks the cylindrical symmetry.

We shall consider in Sec. IV both a geometrical �eccentricity
of QR shape� and interface-related disorder �interface rough-
ness� case.

The evolution method used to obtain the energy levels is
based on the solution of the time-dependent Schrödinger
equation.22–24 It is not limited to small perturbations and can
be used for nonlinear effects, including extreme conditions
created by laser pulses. Using this method, only states of
interest are involved and the calculation can be made to scale
linearly with the size of the system, contrary to methods
based on the linear response formalism which involve diago-
nalization of large matrices. Another advantage of this
method is that it does not use a basis expansion or adjustable
parameters and the effect of external fields is treated in a
nonperturbative way. These features are very important to
treat the impurity problem. In fact, due to the lack of sym-
metry, it is often very difficult to choose a reasonable trial
wave function �variational approach� or ensemble of wave
functions �method of expansion onto a basis� to describe the
electronic states for any magnetic field intensity. Indeed, in
the low magnetic field regime, the Coulomb field effect is
more important than the magnetic field effect, while for high
magnetic fields, the opposite situation occurs.

Let us briefly recall the main aspects of the evolution
method �for more detail, see Refs. 22 and 23�. In order to
solve the time-dependent Schrödinger equation in general, it
is not possible to perform the exponentiation of an operator
exactly, and one must bring the operators to a diagonal form.
The time evolution of the wave function after one-time step

t is given by

��r�,t + 
t� = e−iH
t/���r�,t� . �3�

Since the time evolution operator is unitary, the normal-
ization of the wave function is preserved and thus guarantees
the conservation of the probability and the unconditional sta-
bility of the method. For a time-independent Hamiltonian,
the propagation is time-reversal invariant and conserves the
total energy. The evolution method has been applied to ob-
tain an arbitrary number of eigenstates in various semicon-
ductor structures at B=0.22–24 Here, we generalize this ap-
proach to tackle the magnetic field effects. We show in the
Appendix how to numerically implement this method. Basi-
cally, in order to obtain the electron eigenstates, we start
from an initial Gaussian wave packet and perform �according
to the outline described in the Appendix� its evolution in the
imaginary time domain, that is, one substitutes t by −i. Af-
ter a few steps, the wave function converges to the ground
state of the system. The excited states are obtained using the
same procedure, in combination with a Gram-Schmidt or-
thonormalization.

In order to illustrate the evolution method for the QRs, we
show in Fig. 1 the shifts 
En=En�B�−En�B=0� in the ener-
gies of the ground �n=0� and the first excited �n=1� states as
a function of the external magnetic field, with different val-
ues of ring size for ideal QRs �without the presence of im-
purities�. As can be seen, the AB oscillations are present and
the period of oscillations slightly increases with the energy
level and ring width. This fact was expected both because the
excited state is more spread inside the ring region than the

a

b

FIG. 1. Energy shift 
En=En�B�−En�B=0� as a function of the
external magnetic field of the �a� ground state and �b� first excited
state, with rings of average size ��� �= �a+b� /2=190 Å and width b
−a=60 Å �solid line� and b−a=120 Å �dashed line�, respectively.

FARIAS et al. PHYSICAL REVIEW B 77, 085316 �2008�

085316-2



ground state and because the ring area increases with its
width. In addition, since the magnetic flux through the ring
decreases with both factors, a more intense magnetic field is
necessary in order to observe the AB oscillations.

In the following sections, we consider the effects of dif-
ferent perturbations of the ideal QRs, which are expected to
be present in actual structures. Our aim is to analyze the
robustness of the AB oscillations against static disorder. As
we shall see, realistic perturbations strongly affect �or even
destroy� the AB oscillations in QRs.

III. EFFECTS OF CHARGED IMPURITIES
ON ELECTRONIC LEVELS

To analyze the effects of hydrogenic impurities, we con-
sider initially a ring with size a=140 Å and b=240 Å and
one single impurity with positive charge located at the posi-
tion r�imp= �190 Å,0 ,zi� with two different distances to the
ring plane, that is, z1=10 Å and z2=30 Å, respectively. Fig-
ures 2 and 3 present, respectively, the energies and the aver-
age in-plane radii of the ground and first excited states as a
function of the external magnetic field. As is evident, the
effects on the electronic structure due to a single hydrogenic
impurity is similar to the one resulting from the presence of
an external electric field applied in the ring plane �see, e.g.,
Ref. 6�, representing a break of symmetry related to the field
acting on the confined electron. As shown in Fig. 2�a�, the
AB oscillations were suppressed for the ground state for the
two impurity positions zi. The hydrogenic potential breaks
down the cylindrical symmetry and the electron ground state
confinement is strongly related to the impurity charge. The
reason is that for a positive impurity, the electron tends to be
bounded and consequently confined near the impurity

charge. As seen in Fig. 3, the average radius for the ground
state is very close to the in-plane impurity position of 190 Å
and almost independent of the magnetic fields below 10 T.
The first excited state �Fig. 2�b�	 presents instead small en-
ergy oscillations due to its larger delocalization, showing that
the external magnetic field now starts to play an important
role. The oscillations of the energies with B are accompanied
by an analogous effect on the average radius, as shown in
Fig. 3. However, the hydrogenic potential is very strong even
for the first excited state and one observes oscillations on the
average radius smaller than 1 Å. Figures 2 and 3 show that
the ground state AB oscillations are completely suppressed
by the presence of a “near” impurity. More generally, we
have checked that these oscillations start to be destroyed for
an impurity distance such that the electrostatic perturbation
to the ground state becomes comparable to the characteristic
QR energy spacing, i.e., when e2 / �4�		0�zi���E1�0�−E0�0�.
For the parameters of the QR in Fig. 2, this corresponds to
�zi��1, 5
r0��1, 5�a+b� /2.

Let us consider the same rings, but now with a negative
hydrogenic impurity at the same positions as in Figs. 2 and 3.
Figure 4 presents the energies of the ground and first excited
states as a function of the external magnetic field. Again, due
to the symmetry break, the AB oscillations were suppressed
for the ground state energy at two positions of the impurity.
The first excited state energy presents small oscillations as
long as the impurity stays away from the ring plane. Since
the impurity is negative, the energies are very different from
the ones with a positive charge. Although the average radius
for a positive �Fig. 3� and negative impurity �not shown� is
almost of the same order of magnitude, we have nevertheless
checked that the electron wave function becomes localized
along the circumference of the ring in the presence of an
impurity charge: for the negative �positive� impurity charge,
the electron is confined inside the ring the farthest from the
repulsive center �the nearest from the attractive center�. The

FIG. 2. Energy of the �a� ground state and �b� first excited state
as a function of the external magnetic field for a positive hydro-
genic impurity at two different distances zi to the ring plane z1

=10 Å �solid line� and z1=30 Å �dashed line�, with a=140 Å and
b=240 Å.

FIG. 3. Average in-plane radius of the ground �r0� and first
excited �r1� states as a function of the external magnetic field for the
same parameters as in Fig. 2.
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ground state localization diametrically opposed to the impu-
rity, as well as the suppression of its AB oscillation, starts
occurring when the electrostatic drop along the QR diameter
becomes larger than the characteristic QR energy spacing
E1�0�−E0�0� �see also Ref. 6�. For large diameter QRs, this
rough criterion also leads to �zi��1,5
r0�.

Now we will consider the effects of two hydrogenic im-
purities of the same signal in a QR with size a=140 Å and
b=240 Å, with the first impurity at r�imp

�1�= �190 Å,0 ,z1� and
the second one at r�imp

�2�= �−190 Å,0 ,z2�. The existence of two
impurities presents a more complex analysis and the exis-
tence or not of AB oscillations depends strongly on the rela-
tive positions of impurities along z. Figure 5 presents the
energies of the ground and first excited states as a function of
the external magnetic field for the two attractive centers. In
Fig. 5�a�, we observe that the energies of the ground and first
excited states do not oscillate if z1�z2. In this case, we have
two nonsymmetric attractive centers, which present in the
QR region a nonvanishing average gradient potential �like in
the case of one impurity center in Fig. 2�. If the hydrogenic
impurities are at the same distance of the ring plane �z1

=z2�, the total potential is symmetric �the in-plane average of
the gradient potential vanishes for any QR state� and conse-
quently we can see in Fig. 5�b� weak oscillations in both
energy levels. The amplitudes of the energy oscillations de-
crease rapidly when the impurities approach the QR for z1
=z2 because of the strong perturbation of the impurities close
to the ring plane.

Considering two negative hydrogenic impurities, in Fig.
6, we present the energies of the ground and first excited
states and the ground state average radius as a function of the
external magnetic field. From Fig. 6, we can see that all
energy levels oscillate regardless of the positions of the hy-
drogenic impurities. This means that with two negative hy-

drogenic impurities, the magnetic field is more effective
compared to the case of two positive charges. This result is
understandable in that positive charges act as attractive
sources, while negative charges produce a repulsive field
and, consequently, do not present confined states near the
impurity center. The oscillations of the energies are accom-
panied by weak �less than 1% in amplitude� oscillations of
the ground state average radius �not shown�. Now, all states
present oscillations on the average radius, but the more im-
portant ones occur when the negative charges are in a sym-
metric position �z1=z2�.

The principal trends of previous results can be qualita-
tively understood using a perturbation approach, as follows.
The various field induced crossings E0�B�=E1�B� of an ideal
QR involve two states, differing by one unit of angular mo-
mentum ��
lz�=��. One can show on very general grounds,
and for an arbitrary distribution of N impurities of charge Zp
located at r�p= ���p ,zp� �p=1, . . . ,N�, that the AB crossings
should be replaced by anticrossings whenever the quantity
�p=1

N Zp exp�−q��z−zp��exp�i�p�J1��pq�� does not vanish,
where J1�x� is a Bessel function and q� a wave vector that
results from a two-dimensional Fourier decomposition of the
impurities potential. Indeed, this is the quantity that one gets,
after integration over the in-plane angular variable, when
evaluating the matrix element of the impurity potential be-
tween the two crossing states. This quantity �and thus the full
matrix element� never vanishes in the single impurity case
�provided it is not placed in the QR axis ��p=0�	. For two
impurities with equal charge �same Zp� and at the same in-

FIG. 4. Energy of the �a� ground state and �b� first excited state
as a function of the external magnetic field for a negative hydro-
genic impurity at two different distances zi to the ring plane: z1

=10 Å �solid line� and z2=30 Å �dashed line� for the same QR
parameters as in Fig. 2. FIG. 5. Energy of the ground state �solid line� and first excited

state �dashed line� with two positive hydrogenic impurities nearby a
QR with size a=140 Å and b=240 Å, with the first impurity at
r�imp

�1�= �190 Å,0 ,z1� and the second one at r�imp
�2�= �−190 Å,0 ,z2�. �a�

z1=10 Å and z2=30 Å and �b� z1=z2=30 Å �z1=z2=10.0 Å in the
inset�.
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plane distance from the QR axis �same �p�, this term van-
ishes for z1=z2 and �2=�1+�. Note finally that we always
have B-induced crossings for impurities located in the QR
axis �as, e.g., discussed in Refs. 16 and 17�.

IV. GEOMETRICAL EFFECTS ON ELECTRONIC LEVELS

To study geometrical effects on the AB oscillations, we
consider elliptical QRs composed of concentric ellipses. To
more clearly analyze the geometrical effects, we will con-
sider systems which present different eccentricities, but with
the same area in order to have an equal magnetic flux
through the rings, without the presence of impurities. The
internal �j= I� and external �j=E� interfaces of the ring are
ellipses with eccentricities � j =aj /bj, with minor �major� axis
aj =Rj

� j �bj =Rj /� j� �see Fig. 7�. Let us start with an ellip-
tical ring with same internal and external eccentricities � and
with RI=140 Å and RE=240 Å. Figures 7 and 8 present,
respectively, the energies and the average radii of both the
ground and first excited states as a function of the external
magnetic field for different values of the eccentricity. We first
observed that the AB oscillations are suppressed when � de-
creases. In fact, when � decreases the first two states tend to
become degenerated and the densities of charge are localized
in the regions of the QR of largest curvature. The decrease of
the amplitude of the AB oscillations when � decreases is
similar to the one obtained for two positive impurities �with
z1=z2 and symmetric in-plane positions� when zi decreases.

A criterion for the appearance of the spatial localization
and the suppression of the AB oscillations can be obtained if
we recall that the characteristic level spacing E1�0�−E0�0� of
a circular QR is roughly proportional to 1 /R2, where R is the
QR average radius. For the elliptical QRs in Figs. 7 and 8,
one has R=R���=b cos2���+a sin2���. The suppression of
the AB oscillation is expected to arise when the amplitude of
the angular variation of the characteristic level spacing be-
comes comparable to its value for the mean QR �circular QR
with average radius Rav= �a+b� /2	, that is, when 1 /Rav

2

=1 /a2−1 /b2. For the parameters in Figs. 7 and 8, this means
eccentricities less than �=0.6, in very good agreement with
the fully numerical results.

A different geometrical change in QR is to consider a
system where the internal barrier has cylindrical symmetry
and the external one is a concentric ellipse �system A�. This
system can be experimentally expected due to the mismatch
of the lattice parameters in the formation of the QRs. Let us
consider the case where the internal interface has a radius
RI=140 Å and the external ellipse presents an eccentricity �
with minor �major� axis aj =RE

� �bj =RE /�� with RE

=240 Å. In Fig. 9, we present the energies of the ground and
the first excited states as a function of the external magnetic
field with different values of eccentricity and compared with

FIG. 6. Energy of the ground state �solid line� and first excited
state �dashed line� with two negative hydrogenic impurities nearby
a QR with size a=140 Å and b=240 Å with the first impurity at
r�imp

�1�= �190 Å,0 ,z1� and the second one at r�imp
�2�= �−190 Å,0 ,z2�. �a�

z1=10 Å and z2=30 Å and �b� z1=z2=30 Å and z1=z2=10 Å in the
inset, respectively.

b
e

a
e

a
i

b
e

a
e

b
i

FIG. 7. Energy of the ground �solid line� and the first excited
�dashed line� state as a function of the external magnetic field with
different values of eccentricity, RI=140 Å, and RE=240 Å.
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the energies of QRs composed by concentric ellipses of the
same area �system B�. For system B, we used the same defi-
nitions for the minor �major� axis of the concentric ellipses
and considered for the internal �external� ellipse RI=140 Å

�RE=240 Å�. Since both systems have the same area, the
minima and maxima of the oscillations occur at the same
values of the magnetic field. Also, oscillations of the same
order of magnitude come out for very different values of the
eccentricity: corresponding to �=0.94 and �=0.85 for system
A and �=0.85 and �=0.65 for system B. This difference
obtains because in system B the width of the ring is constant,
while in system A, the ring width is very small along the
minor axis, compared to its value along the major axis. Con-
sequently, the wave function in system A will be localized in
the regions close to the major ellipse axis, corresponding to
two quasidegenerate states, similar to the effect of two posi-
tive impurities charges. The average radius of systems A and
B are shown in Fig. 10. As expected, the systems that present
small energy oscillations �A with �=0.85 and B with �
=0.65� have low oscillations on the average radius �see Fig.
10�b�	. In the systems with energies of the same order of
magnitude, the corresponding average radii in B are always
bigger than the ones in system A since concentric ellipses
�system B� have higher eccentricities compared to system A.

Another change in geometrical parameters in QRs is to
consider the existence of roughness at the ring interfaces.
These correspond to protrusions of barrier material in the
ring region or vice-versa. Here, we simulate one QR with
rough interfaces by assuming that the internal and external
interface radii can be described by a function of the type
�see, e.g., Ref. 25�,

R��� = Rav + r��� , �4�

r��� = 2�R LC

2�Rav
�
n�0

exp�− � nLC

2Rav
�2�cos�n� + �n� ,

�5�

where � is the in-plane angle, �n are aleatory phases, Rav is
the average radius, �
r�0�2��1/2=�R the mean displacement

FIG. 8. Average radius of the ground state �solid line� and the
first excited �dashed line� as a function of the external magnetic
field with different values of eccentricity. Same QR parameters as in
Fig. 7.

FIG. 9. Energy of the ground state �solid line� and the first
excited state �dashed line� as a function of the external magnetic
field with different values of eccentricity and for the case when the
QR internal barrier has cylindrical symmetry and the external one is
a concentric ellipse �system A�, and when the QRs are composed by
concentric ellipses �system B�, having the same area.

FIG. 10. Average radius of the ground state �solid line� and the
first excited state �dashed line� as a function of the external mag-
netic field for the same systems as in Fig. 9.
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from the average radius, and LC is the correlation length of
the interface radius. The three parameters �set of �n, LC, and
�R� are in general different for the inner �Rav=RI� and outer
�Rav=RE� interfaces.

To analyze the effects of roughness, we present in Fig. 11
the energies of the ground and first excited states as a func-
tion of the external magnetic field, considering an ideal QR
�circular interfaces� and for rings with roughness at only the
internal, only the external, or at both interfaces �RI=140 Å,
RE=240 Å, �RI=�RE=5 Å, and LCRI=LCRE=10 Å�. The AB
oscillations are present in all cases. However, the disorder in
any case transforms the field-induced AB crossing of the
ideal QR into anticrossings. This is because the disorder po-
tential has a nondefined angular dependence with, in particu-
lar, a nonvanishing �
lz�=� component, which is able to
couple the two crossing states of the ideal QR. Note that this
is never the case for the different eccentricity configurations
discussed above, which all have a D-like in-plane symmetry
and thus are unable to lift the field-induced AB crossing
between the first two QR states. In Fig. 12, we show the
average radius of the ground and first excited states as a
function of the external magnetic field associated with the
states presented in Fig. 11. With the QR with ideal interfaces,
there is an abrupt change in some values of the magnetic
field, but depending on what interface roughness is present, a
smooth transition is observed between the ground and first
excited state for the same values of the magnetic field.

V. CONCLUSION

In this work, we have calculated the electronic states of a
semiconductor quantum ring in the presence of an axial uni-
form magnetic field. We have considered the effect of differ-
ent static perturbations on the energy spectrum of the QR and

considered, in particular, the effect of the disorder upon its
AB oscillations. To this aim, and contrary to previous theo-
retical works, we have applied a nonperturbative method,
which can be used for disorder of any strength. This has the
advantage of simultaneously enabling us to tackle important
defect perturbations, like the ones due to the presence of
charged impurity centers nearby the QR, while allowing not
only the description of the electron ground state but also of
the excited QR states. Our results show that the AB oscilla-
tions are very sensitive to the nature of the disorder. For
instance, an eccentricity in the ring geometry never washes
out the leading AB oscillations �and the field-induced cross-
ings� but may considerably decrease their amplitude: this is
because an important eccentricity generates a preferential lo-
calization of the electron wave functions near the regions of
largest curvature. On the contrary, random roughness in the
QR interfaces always lifts the field-induced crossings that
occur in a perfect QR but affects to a lesser extent the oscil-
lations amplitude �since in the general case, it does not lead
to any preferential localization along the QR circumference�.
Finally, impurity centers, which are expected to be present in
actual structures, may considerably affect the energy spec-
trum. For instance, a charged center placed nearby the QR
region will suppress the oscillations of the energies with the
applied field.
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energy difference �top� as a function of the external magnetic field,
considering an ideal QR �solid line� and a QR with roughness at the
internal �dotted line� at the external �dashed line� and at both inter-
faces �square symbol�.

FIG. 12. Average radius of the ground state �
r0�� and first ex-
cited state �
r1�� as a function of the external magnetic field consid-
ering an ideal QR �solid line� and a QR with roughness at the
internal �dotted line� at the external �dashed line� and at both inter-
faces �square symbol�.
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APPENDIX

In the numerical calculations, we consider our system
placed inside a large square hard box of side L. In the pres-

ence of an external magnetic field, we replace p� by p� +eA�

and use the expansion proposed by Suzuki.26 The time evo-
lution of the wave function �Eq. �3�	 can be written as

��r�,t + 
t� = exp�− i
t

2�
V�r���exp�− i
t

�
T�exp�− i
t

2�
V�r���

���r�,t� + O�
t3� , �A1�

where the total kinetic energy is T=Tx+Ty, where

Tx =
1

2m* �px − eyB/2�2 =
1

2m*�− i�
�

�x
− eyB/2�2

,

Ty =
1

2m* �py + exB/2�2 =
1

2m*�− i�
�

�y
+ exB/2�2

.

�A2�

The error introduced in this expansion by dropping the
term O�
t3� results from the fact that kinetic and potential
operators do not commute. Note that, at first glance, we
could be tempted to use cylindrical coordinates since we are
dealing with electrons in a quantum ring. However, our final
purpose is to analyze the effects of impurities and geometri-
cal defects in these systems, which break the cylindrical ring
geometry. For this reason, it is more convenient to use Car-
tesian coordinates �which are also easier to numerically
implement� in our numerical calculations.

At nonzero magnetic field, Tx and Ty do not commute and

exp�− i
t

�
�Tx + Ty�� = exp�− i
t

�
Ty�exp�− i
t

�
Tx�

+ O�B�
t2�	 . �A3�

To proceed further within this approximation, we define

��r�,t + 
t� = exp�− i
t

�
Ty����r�,t + 
t� , �A4�

���r�,t + 
t� = exp�− i
t

�
Tx���r�,t + 
t� , �A5�

and

��r�,t + 
t� = exp�− i
t

2�
V�r�����r�,t� , �A6�

When we study systems with periodic boundary condi-
tions, the exponential containing the kinetic operator is effi-
ciently treated by the fast Fourier transform since it is diag-
onal in reciprocal space. However, when the system is not
periodic, we use the following expansion �see, e.g., Ref. 27�:
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Equation �A5� can thus be written as
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�A8�

Using the finite difference method to discretize the func-
tions ���r� , t+
t�, ��r� , t+
t�, and their derivatives, Eq. �A8�
can be written for numerical purposes as

− �x�1 + i�y��i−1� + �1 + �x�2 + ��y�2	��i� − �x�1 − i�y��i+1�

= �x�1 + i�y��i−1 + �1 − �x�2 + ��y�2	��i + �x�1 − i�y��i+1,

�A9�

where �y =
x�c�y /4Ry and �x= iRy
t /2��
x�2, being �c

and Ry the effective cyclotron resonance and Rydberg, re-
spectively, and 
x and 
y the mesh in real space.

Using the same procedure for the propagation related to
the Ty operator, we obtain for Eq. �A4�,

− �y�1 + i�x��i−1 + �1 + �y�2 + ��x�2	��i − �y�1 − i�x��i+1

= �y�1 + i�x��i−1� + �1 − �y�2 + ��x�2	��i�

+ �y�1 − i�x��i+1� , �A10�

with �x=−
y�c�x /4Ry and �y = iRy
t /2��
y�2. In Eqs.
�A9� and �A10�, the variables x, y, 
x, and 
y are in units of
effective Bohr radius.

With Eqs. �A9� and �A10�, the wave function propagation
is now reduced to a matrix problem. For a time-independent
Hamiltonian, the propagation is time-reversal invariant and
conserves the total energy. In order to obtain the electron
eigenstates, the outline described above is applied to an ini-
tial Gaussian wave packet and the evolution is made in the
imaginary time domain, that is, one substitutes t by −i. Af-
ter a few steps, the wave function converges to the ground
state of the system. The excited states are obtained using the
same procedure, in combination with a Gram-Schmidt or-
thonormalization. Typically, to obtain numerical conver-
gence, we use a mesh of Nx=Ny =141 squares with sides of
5 Å each, 
t=0.2 fs, and we propagate the wave function up
to Nt=28�103 time steps.
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